翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dynkin's lemma : ウィキペディア英語版
Doob–Dynkin lemma
In probability theory, the Doob–Dynkin lemma, named after Joseph L. Doob and Eugene Dynkin, characterizes the situation when one random variable is a function of another by the inclusion of the \sigma-algebras generated by the random variables. The usual statement of the lemma is formulated in terms of one random variable being measurable with respect to the \sigma-algebra generated by the other.
The lemma plays an important role in the conditional expectation in probability theory, where it allows to replace the conditioning on a random variable by conditioning on the \sigma-algebra that is generated by the random variable.
==Statement of the lemma==
Let \Omega be a sample space. For a function f:\Omega \rightarrow R^n, the \sigma-algebra generated by f is defined as the family of sets f^(S), where S are all Borel sets.
Lemma Let X,Y: \Omega \rightarrow R^n be random elements and \sigma(X) be the \sigma algebra generated by X. Then Y is \sigma(X)-measurable if and only if Y=g(X) for some Borel measurable function g:R^n\rightarrow R^n.
The "if" part of the lemma is simply the statement that the composition of two measurable functions is measurable. The "only if" part is the nontrivial one.
By definition, Y being \sigma(X)-measurable is the same as Y^(S)\in \sigma(X) for any Borel set S, which is the same as \sigma(Y) \subset \sigma(X). So, the lemma can be rewritten in the following, equivalent form.
Lemma Let X,Y: \Omega \rightarrow R^n be random elements and \sigma(X) and \sigma(Y) the \sigma algebras generated by X and Y, respectively. Then Y=g(X) for some Borel measurable function g:R^n\rightarrow R^n if and only if \sigma(Y) \subset \sigma(X).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Doob–Dynkin lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.